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Abstract—Traditionally Deep Neural Networks (DNNs) ser-
vices are deployed in the cloud, due to the computation-intensive
DNN models. In recent years, as emerging edge computing
provides new possibilities for DNN applications, we have op-
portunities to process DNN models in the cloud and on the
device collaboratively, i.e., edge-cloud computing. Since cloud
and edge devices demonstrate significant diversity on inference
latency, network transmission overhead, memory capacity and
power consumption, it is a big challenge to determine the DNN
model deployment in the cloud and on edge devices. In this
paper, we characterize the behaviours of three types of DNN
models, i.e., CNN, LSTM and MLP, on four types of platforms,
i.e., server-class CPU, server-class GPU, embedded device with
GPU, and smart-phones. Our experimental results demonstrate
that we can carefully tune a deployment strategy for DNN models
in the cloud, and on big and (or) little cores of the edge device,
to balance performance and power consumption.

I. INTRODUCTION

In recent years, DNNs are widely adopted in a variety of
Artificial Intelligence (Al) applications, such as speech recog-
nition, image classification, and natural language processing.
Traditionally these applications are deployed as Request-
Response services in the cloud. However, they are moving
to the edge, as the emerging Al chips being integrated into
smartphones. When a DNN is completely processed in the
cloud, the inference latency is minimized, but the data needs
to be transferred to the cloud, which introduces extra network
transmission overhead. On the contrary, when a DNN is totally
processed on device, the network transmission overhead is
eliminated, but the inference latency will be increased. An
alternative way is to run the DNNs between the edge and
the cloud collaboratively to balance the network transmission
overhead and on-device inference latency. Thus, it is a big
challenge to deploy the DNNs between on-device processing
and cloud-only processing coordinately, due to their diversity
in inference latency, network transmission overhead, memory
capacity and power consumption.

A representative research on edge-cloud processing is Neu-
rosurgeon [1], which automatically partitions DNN computa-
tion between mobile devices and data-center at the granularity
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of neural network layers. Neurosurgeon demonstrates the
benefit of collaborative edge-cloud processing. However, there
are still several questions to be answered:

o For a given DNN model, how the process time is dis-
tributed across its layers on different platforms?

e What are the performance characteristics of different
kinds of DNNs on cloud and edge platforms?

To provide an insight into these questions, we present de-
tailed experimental results for frequently-used DNN models on
representative cloud and edge platforms. Experimental results
show that mobile platforms are suitable for running represen-
tative LSTM, MLP and mobile-optimized CNN models, but
unsuitable for traditional CNN models while server class CPUs
and GPUs are sufficient enough for DNNs’ inference. This
indicates that it is of the essence to explore collaborative edge-
cloud processing of DNN models. Furthermore, for smart-
phones integrated with powerful/power-hungry cores (big) and
slower/battery-saving cores (little), we find that there exists
possibility to deploy DNN computation across the big and
small cores to balance performance and power consumption.

II. EXPERIMENTAL SETUP

In our study, we consider three typical kinds of DNNs: Con-
volutional Neural Networks (CNNs) [2]-[4], Recurrent Neural
Network (RNNs) [5] and Multilayer Perceptrons (MLPs) [6].
Table I summarizes DNNs used in this paper.

TABLE I: DNN specifications

Name Input Output Layers | # Params | FLOPs
Inception V1 22 6.79M 3.19B
ResNet-50 [224,224,3] [1000] 50 25.6M 3.8B
MobileNet 1.0 15 4.2M 576M
LSTM [20, 200] [20,10000] 2 2.65M 14.8M
MLP [784] [10] 5 13.9M 13.9M

Table II shows the specifications of cloud and edge plat-
forms evaluated in this paper. For software platforms, we use
TensorFlow version rl.4 for both cloud and edge platforms,
Intel MKL-DNN as the matrix computation libraries for server
class CPUs and CUDA 8 and cuDNN 6 for server class
GPUs. For edge platforms, TensorFlow is compiled with
Android NDK r14b (targeting arm64-v8a). We leverage the



TABLE II: Device notations for cloud & edge platforms

Platform Notation Mobile SoC Notation.

E5-2620 v4 Server CPU A | OnePlus 5T Sd. 835 Edge CPU A
E5-1603 v4 Server CPU B OnePlus 3 Sd. 820 Edge CPU B
Tesla K40c Server GPU A RedMi Sd. 625 Edge CPU C
GTX 1070 Server GPU B Jetson TX2 Pascal GPU Edge GPU A

’Sd.” is short for Snapdragon. RedMi typically means RedMi Note 4x in this paper.

benchmark_model [7] utility provided by TensorFlow for
performance analysis. The batch size is set to 1 as we only
focus on inference phase.

III. EVALUATION RESULT

In this section, we first present overall evaluation results of
five DNN models across eight different platforms. Then, we
take the Edge CPU A as an example to investigate how the
number of cores/threads as well as big. LITTLE architecture
impacts the inference latency.

Fig. 1 depicts the computation latency of five DNN networks
on eight platforms, with X-axis representing DNN models
and Y-axis representing computation latency (note that the
Y-axis is log-scaled). For a given DNN model on a specific
platform, we report the optimal results by trying all available
configurations. Fig. 1 leads to the following findings:

e Modern edge CPUs are powerful enough to process
DNNs like LSTM, MLP and mobile-optimized CNNs
while still insufficient for traditional CNNs.

e GPU (Server or Edge) is around an order of magnitude
faster than corresponding CPU for CNNs and MLP while
no such performance gap is observed for LSTM.

To balance performance and energy consumption,
big. LITTLE architecture is commonly adopted in modern
smartphone devices. We evaluate how inference latency of
DNN models scale with number of threads for big.LITTLE
architecture. In Fig. 2, the three CNNs (Inception VI,
ResNet-50, MobileNet 1.0) are plotted against left Y-axis
while LSTM and MLP are against right Y-axis. Note that 8
threads (Big+Little) represent using all cores. According to
Fig. 2, we observe that:

e« CNNs exhibit well scalability when enjoying more
threads/cores while LSTM and MLP benefit little from
extra threads.
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Fig. 1: Computation latency of five DNN models on eight
platforms with optimal configuration.
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Fig. 2: Computation latency of five DNNs on Edge CPU A
with 1, 2, 4, 8 threads when using Big and/or Little cores.

e More resources may harm performance of DNN models
on big.LITTLE architectures. The computation latency of
all five DNNs increases when moving from 4 big cores
to 4 big + 4 little cores in Fig. 2. This phenomenon
is possibly caused by the operating system scheduler or
characteristic of big.LITTLE architecture (e.g. no cache
sharing between big and little cores).

IV. CONCLUSION

In this paper, we provide in-depth evaluation of five DNN
models on four types of platforms. Experimental results
demonstrate the computation latency of DNN models show
much variance due to the diversity of platforms. More specif-
ically, dynamic deploy strategy shall be carefully designed
to balance performance and energy consumption on mobile
big.LITTLE architecture. In future work, we will evaluate the
energy consumption of edge platforms, and explore opportuni-
ties for collaborative edge-cloud processing of DNN models.
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